If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
x = 0
x^2 = 0
x = 0
x = 0
x^2 = 0
x^2 = 0
1*x^2 = 0 // : 1
x^2 = 0
x = 0
x in (-oo:0) U (0:+oo)
2-(1/x)-(5/(x^2)) = 0
2-x^-1-5*x^-2 = 0
t_1 = x^-1
2-5*t_1^2-1*t_1^1 = 0
2-5*t_1^2-t_1 = 0
DELTA = (-1)^2-(-5*2*4)
DELTA = 41
DELTA > 0
t_1 = (41^(1/2)+1)/(-5*2) or t_1 = (1-41^(1/2))/(-5*2)
t_1 = (41^(1/2)+1)/(-10) or t_1 = (1-41^(1/2))/(-10)
t_1 = (41^(1/2)+1)/(-10)
x^-1-((41^(1/2)+1)/(-10)) = 0
1*x^-1 = (41^(1/2)+1)/(-10) // : 1
x^-1 = (41^(1/2)+1)/(-10)
-1 < 0
1/(x^1) = (41^(1/2)+1)/(-10) // * x^1
1 = ((41^(1/2)+1)/(-10))*x^1 // : (41^(1/2)+1)/(-10)
-10*(41^(1/2)+1)^-1 = x^1
x = -10*(41^(1/2)+1)^-1
t_1 = (1-41^(1/2))/(-10)
x^-1-((1-41^(1/2))/(-10)) = 0
1*x^-1 = (1-41^(1/2))/(-10) // : 1
x^-1 = (1-41^(1/2))/(-10)
-1 < 0
1/(x^1) = (1-41^(1/2))/(-10) // * x^1
1 = ((1-41^(1/2))/(-10))*x^1 // : (1-41^(1/2))/(-10)
-10*(1-41^(1/2))^-1 = x^1
x = -10*(1-41^(1/2))^-1
x in { -10*(41^(1/2)+1)^-1, -10*(1-41^(1/2))^-1 }
| 28+3=x | | -2a4/-3b-7 | | 1/7-2/7j=3/14 | | 38=5x-4+8x-10 | | f(-3)=-3+9.5 | | 12r^2-36r-144=0 | | .33x-1.33=.75x-1.6 | | r^2-6r+10=0 | | (12.2)(3+2)=360 | | -13=7x-1-4x-3 | | x^2+9=3x | | (2x+3)+x=37 | | 7+2(5x-5)=5-5(2x+1) | | -9(-11)= | | 7x+3-3=23 | | 10x-2(x+3)=6x+8 | | 1/3x^2-1/9x-2/9=0 | | f(-5)=-5+9.5 | | 3r^2-2r+14=0 | | 1/4x^2-1/28x-3/14=0 | | (5/6)c+15=0 | | 92-(-16)= | | 6x-10=3x-40 | | -4(7x-5)=160 | | 0.04/2 | | -12-(-21)= | | x-6-10x-8= | | 9x-1=9(x+7) | | 42.28=8g+3.56 | | -104=8(1-7x) | | 4=-5x+6n^2 | | 4=-5x+6n^2 |